

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Respect\Assertion

[image: Build Status] [http://travis-ci.org/Respect/Assertion]
[image: Scrutinizer Code Quality] [https://scrutinizer-ci.com/g/Respect/Assertion/?branch=master]
[image: Code Coverage] [https://scrutinizer-ci.com/g/Respect/Assertion/?branch=master]
[image: Latest Version] [https://packagist.org/packages/respect/assertion]
[image: Total Downloads] [https://packagist.org/packages/respect/assertion]
[image: License] [https://packagist.org/packages/respect/assertion]

The power of Validation [http://respect.github.io/Validation] into an assertion library.

This library allows to use any rule from Validation [http://respect.github.io/Validation] as an assertion. For a
complete list of rules, check the list of rules [http://respect.github.io/Validation/docs/validators].

Installation

Package is available on Packagist [http://packagist.org/packages/respect/assertion], it can be installed using Composer [http://getcomposer.org].

composer require respect/validation

Works on PHP 7.1 or above.

Another assertion library

There are two great PHP assertion libraries that are very much known in the PHP
community:

	beberlei/assert [https://github.com/beberlei/assert]

	webmozart/assert [https://github.com/webmozart/assert]

They are both extremely easy to use and have a lot of assertions. This library
has no intention to compete or do something better than them, the advantages and
the reason why this library was created is that Validation [http://respect.github.io/Validation] has a lot of
rules and that this library also allows to use custom exceptions at runtime.

The idea of Validation [http://respect.github.io/Validation] is to make easy to create chain of validations, it
has a very clean API. This library offers a more straightforward API for when
only a simple assertion is needed.

Usage

The examples in the document will assume that this library is available in the
autoload and that the class Respect\Assertion\Assert is imported.

Any rule from Validation [http://respect.github.io/Validation] can be used by the Assert class if the input is
passed as the first argument:

// will throw an exception => 1 must be equals 5
Assert::equals(1, 5);

// will throw an exception => "string" must be of the type integer
Assert::intType('string');

// will not throw an exception
Assert::odd(5);

The exceptions that are throw are the same that Validation [http://respect.github.io/Validation] throws, that also
allows message customization:

// will throw an exception => 5 is the value that 1 should be
Assert::equals(1, 5, '{{compareTo}} is the value that {{input}} should be');

This library also allows the use of custom exceptions:

// will throw the defined DomainException
Assert::between(42, 1, 10, true, new DomainException('Something is not right'));

That can be very useful if you want to throw custom exceptions. That was a great
idea from Malukenho [https://github.com/malukenho]!

Not

Assertions can be executed with the not prefix which will assert the opposite
of the prefixed assertion:

// will throw an exception => 2 must not be an even number
Assert::notEven(3);

// will throw an exception => 3 must not be in { 1, 2, 3, 4 }
Assert::notIn(3, [1, 2, 3, 4]);

If not is used without a suffix, this library will use Equals [http://respect.github.io/Validation/docs/equals] to assert:

// will throw an exception => 42 must not be equals 42
Assert::not(42, 42);

All

Assertions can be executed with the all prefix which will assert all elements
in the input with the prefixed assertion:

// will throw an exception => "3" in { 1, 2, "3" } must be of the type integer
Assert::allIntType([1, 2, '3']);

Differently from other assertion libraries the message shows not only the item
in the input that failed the assertion but also the input itself.

If all is used without a suffix, this library will use Equals [http://respect.github.io/Validation/docs/equals] to assert:

// will throw an exception => "A" in { "A", "B", "C" } must be equals "D"
Assert::all(['A', 'B', 'C'], 'D');

Length

Assertions can be executed with the length prefix which will assert the length
of the input with the prefixed assertion:

// will throw an exception => 6, the length of "string", must be between 10 and 15
Assert::lengthBetween('string', 10, 15);

As can be seen the message shows not only the length of the input that failed
the assertion but also the input itself.

The length prefix can also be used with arrays and instances of Countable [http://php.net/countable]:

// will throw an exception => 4, the length of { 1, 2, 3, 4 }, must be an odd number
Assert::lengthOdd([1, 2, 3, 4]);

// will throw an exception => 3, the length of `[traversable] (ArrayObject: { 1, 2, 3 })`, must be an even number
Assert::lengthEven(new ArrayObject([1, 2, 3]));

This library also allows you to use the not prefix after the length prefix:

// will throw an exception => 2, the length of { 1, 2 }, must not be multiple of 2
Assert::lengthNotMultiple([1, 2], 2);

If length is used without a suffix, this library will use Equals [http://respect.github.io/Validation/docs/equals] to assert:

// will throw an exception => 9, the length of "something", must be equals 3
Assert::length('something', 3);

Max

Assertions can be executed with the max prefix which will assert the maximum
value of the input with the prefixed assertion:

// will throw an exception => 3, the maximum of { 1, 2, 3 }, must be between 5 and 10
Assert::maxBetween([1, 2, 3], 5, 10);

As it can already be seen, the message shows not only the maximum of the input
that failed the assertion but also the input itself.

The max prefix can be used with any iterable [http://php.net/types.iterable] value:

// will throw an exception => 3, the maximum of { 1, 2, 3 }, must be an even number
Assert::maxEven([1, 2, 3]);

// will throw an exception => 60, the maximum of `[traversable] (ArrayObject: { 45, 60, 20 })`, must be a valid perfect square
Assert::maxPerfectSquare(new ArrayObject([45, 60, 20]));

This library also allows you to use the not prefix after the max prefix:

// will throw an exception => 23, the maximum of { 23, 7, 20 }, must not be positive
Assert::maxNotPositive([23, 7, 20]);

If max is used without a suffix, this library will use Equals [http://respect.github.io/Validation/docs/equals] to assert:

// will throw an exception => "C", the maximum of { "A", "B", "C" }, must be equals "D"
Assert::max(['A', 'B', 'C'], 'D');

Min

Assertions can be executed with the min prefix which will assert the minimum
value of the input with the prefixed assertion:

// will throw an exception => 1, the minimum of { 1, 2, 3 }, must be between 5 and 10
Assert::minBetween([1, 2, 3], 5, 10);

As it can already be seen, the message shows not only the minimum of the input
that failed the assertion but also the input itself.

The min prefix can be used with any iterable [http://php.net/types.iterable] value:

// will throw an exception => 1, the minimum of { 1, 2, 3 }, must be an even number
Assert::minEven([1, 2, 3]);

// will throw an exception => 20, the minimum of `[traversable] (ArrayObject: { 45, 60, 20 })`, must be a valid perfect square
Assert::minPerfectSquare(new ArrayObject([45, 60, 20]));

This library also allows you to use the not prefix after the min prefix:

// will throw an exception => 7, the minimum of { 23, 7, 20 }, must not be positive
Assert::minNotPositive([23, 7, 20]);

If min is used without a suffix, this library will use Equals [http://respect.github.io/Validation/docs/equals] to assert:

// will throw an exception => "A", the minimum of { "A", "B", "C" }, must be equals "D"
Assert::min(['A', 'B', 'C'], 'D');

To-do

	Allow to make assertions with nullOr prefix

	Allow to make assertions with any prefix

	Allow to make assertions with key prefix

	Allow to make assertions with attribute prefix

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_static/up.png

